
A ROBUST AND SCALABLE SOFTWARE LIBRARY FOR PARALLEL ADAPTIVE
REFINEMENT ON UNSTRUCTURED MESHES

John Z. Lou, Charles D. Norton, and Thomas A. Cwik
National Aeronautics and Space Administration

Jet Propulsion Laboratory, California Institute of Technology
MS 168-522,4800 Oak Grove Drive, Pasadena, CA 91 109-8099, U.S.A.

{ John.Lou, CharlesNorton, Thomas.Cwik}@jpl.nasa.gov

Abstract

The design and implementation of Pyramid (http://www-hpc.jpl.nasa.gov/APPS/AMR/), a soft-
ware library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is
described. This software library can be easily used in a variety of unstructured parallel computa-
tional applications, including parallel finite element, parallel finite volume, and parallel visualiza-
tion applications using triangular or tetrahedral meshes. The library contains a suite of well-
designed and efficiently implemented modules that perform operations in a typical PAMR pro-
cess. Among these are mesh quality control during successive parallel adaptive refinement (typi-
cally guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning
using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an inter-
face to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and
portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is
illustrated.

1. Introduction

Adaptive mesh refinement (AMR) represents a class of numerical techniques that has demon-
strated great effectiveness for a variety of computational applications including computational
physics, structural mechanics, electromagnetics, and semiconductor device modeling. When an
application domain is discretized into a computational mesh, various portions of the mesh can be
refined, or coarsened, in regions where varying degrees of accuracy are required. This approach
saves memory and computing time over methods that use a uniform resolution over the entire
application domain.

Unfortunately, the development of an efficient and robust adaptive mesh refinement component
for an application, particularly for unstructured meshes on multiprocessor systems, is very com-
plex. The motivation for our work is to provide an efficient and robust parallel AMR library that
can be easily integrated into unstructured parallel applications. Therefore, our library approach
separates support for parallel adaptive refinement and mesh maintainence techniques from any
application-specific solution processes.

Research on parallel AMR for unstructured meshes has been previously reported [l$]. Most
efforts are based on C++, and many realize that mesh quality control during successive adaptive
refinement is an active research topic. Our work features the use of Fortran 90 and MPI for paral-
lel AMR on unstructured triangular and tetrahedral meshes, the implementation of robust schemes
for parallel adaptive refinement and mesh quality control during a repeated AMR process, and a
“plug-in” component for stiffness matrix construction in finite element applications. We selected

mailto:Thomas.Cwik}@jpl.nasa.gov
http://www-hpc.jpl.nasa.gov/APPS/AMR

Fortran 90 for our implementation because it provides new abstraction modeling facilities benefi-
cal for parallel unstructured AMR development. This approach also simplifies interface concerns
with scientific application codes, many of which were developed in Fortran 77 for high perfor-
mance.

General organization of the parallel AMR process for unstructured meshes.

2. The AMR Components

The general organization of the parallel AMR process is illustrated. Initially, the (generally ran-
dom) input mesh must be repartitioned and redistributed after loading from the disk. The applica-
tion computation and local error-estimation step occur, after which a logical AMR process occurs.
(Load balancing can occur based on this process since the refinement scheme is completely
defined, although it has not yet physically occurred.)

The load balancing process moves coarse elements from the logical refinement, based on a
weighting scheme, to the proper destination processors using the migration module. At this point,
the physical AMR step occurs by applying local refinement processes.

Finally, the element quality can be checked by performing an explicit mesh smoothing operation
or 'by ensuring high quality element creation during refinement. We apply the latter approach
since it prevents degradation of mesh quality after successive adaptive refinements. Every stage of
our AMR process is performed using parallelism.

3. Fortran 90 and Abstraction Modeling Principles in Parallel AMR Development

Fortran 90 modernizes traditional Fortran 77 scientific programming by adding many new fea-
tures. These features allow programs to be designed and written at a higher level of abstraction,
while increasing software clarity and safety without sacrificing performance [7]. Fortran 90’s
capabilities encourage scientists to design new kinds of advanced data structures supporting com-
plex applications, like parallel AMR. These capabilities extend beyond the well-known array syn-
tax and dynamic memory management operations.

While Fortran 90 is not an object-oriented language (certain 00 features can be emulated by soft-
ware constructs) the methodology simplifies library interfaces such that the internal details are
hidden from library users [5]. Fortran 90 modules and derived types allow user-defined types, like
the mesh, to be defined with associated routines. Modules that capture essential features of paral-
lel AMR can be combined with each other, adding to the flexibility and organization of the soft-
ware design. These techniques, and other features, allow the library to contain clearly organized
interfaces for use in parallel applications.

4. The Adaptive Refinement Process

The adaptive refinement process is based on logical and physical refinements. The logical refine-
ment step uses an iterative procedure that traverses through elements of the coarse mesh repeat-
edly to “define” a consistent mesh refinement pattern on the coarse mesh. The result of the logical
refinement is stored in the data structure of the coarse mesh, which completely specifies whether
and how each element in the coarse mesh should be refined. Our adaptive refinement scheme is
based on “edge-marking” for both triangular and tetrahedral meshes. Starting from a predeter-
mined subset of elements, the logical refinement scheme proceeds by marking (or logically refin-
ing) element edges wherever necessary, and the refinement pattern for each element is determined
by the number of marked edges in that element.

With information generated from the’ logical refinement step, the actual mesh refinement becomes
conceptually simpler, since it is completely specified how each element should be refined. To
make the physical refinement process simpler and efficient, low-level objects are refined before
refining high-level objects. On a triangular mesh, it means edges are refined before refining ele-
ments.

To perform a parallel logical adaptive refinement, we extend the serial scheme so that after tra-
versing the local element set for edge-marking, each processor updates the status of edges on
mesh partition boundaries by exchanging the edge status information (i.e. marked or not marked)
with its neighboring processors.

5. Mesh Quality Control

A problem associated with repeated AMR operations, typically guided by a local-error estimator,
is the deterioration of mesh quality. Most mesh smoothing schemes tend to change the structure of
a given mesh to achieve the “smoothing effect” by rearranging nodes in the mesh. The changes
made by a smoothing scheme, however, could modify the desired distribution of element density
produced by the AMR procedure, and the cost of performing a global mesh smoothing could be
very high. Nevertheless, applying a relatively efficient smoothing scheme over the last adaptively
refined mesh is probably reasonable for mesh quality improvement. Alternatively, it is possible to

prevent, or slow
down, the degrada-
tion of element qual-
ity during a repeated
adaptive refinement
process.

The mesh quality
control scheme we
have applied classi-
fies elements based
on how they were
refined. This allows
us to forsee the
potential of creating
elements with poor
aspect ratios in the
next refinement.
After identifying
those elements, we
can replace them
with a refinement
pattern that improves
upon the geometry.

1 1

2

5
Original Refinement Modified Refinement

Possible Refinement Patterns

The figure shows the original refinement of a coarse element (2-3-4). Successive refinements will
destroy the aspect ratio of existing elements, leading to poor mesh quality. The approach we apply
modifies the coarse element refinement, as shown, should either of the child elements require h r -
ther refinement (due to local errors or mesh consistency constraints from neighbor element refine-
ment). This process controls the mesh quality, at the slight expense of creating more elements.

We integrate the mesh quality control feature into our adaptive refinement scheme, for triangular
meshes, by defining all possible refinement patterns for a pair of “twin” transitional elements
(child elements of element 2-3-4 in the original mesh). During the logical refinement step the
scheme checks all marked edges of the twin elements allowing one of the indicated refinement
patterns to be selected. To simplify the physical refinement stage we ensure that the partitioner
will not place the twin elements onto different processors. This guarantees that once mesh migra-
tion has occured, the physical refinement for the parent element (2-3-4) will create child elements
in a local manner. Refinement patterns are also applied for tetrahedral meshes as well.

6. Interlanguage Communication and Load Balancing Issues

Our software needs to communicate with the ParMeTiS parallel mesh partitioner, which is written
in the C programming languauge [6] . We have a single routine that acts as the conduit between
our Fortran 90 system and the C ParMeTiS library. Interlanguage communication between Fortran
90 and C is not a problem, provided the linker knows the format of external routine names (gener-
ally, underscore, doubleunderscore, UPPERCASE, or lowercase). Fortran 90 derived type

objects can be passed by reference to C structures, or simple arrays can be communicated, but we
advise using the Fortran 90 SEQUENCE attribute to request the proper byte-alignment ordering.
The weighted graph helps ParMeTiS attempt to minimize element movement and the number of
components on partition boundaries.

This process involves converting the distributed mesh into a distributed graph by computing the
dual of the mesh. When the partitioner returns, a mapping for every element is specified. The
migration module redistributes the elements among the processors based on this mapping. Since
the communication is irregular, and unpredictable, an efficient non-blocking irregular communi-
cation scheme has been developed for the element redistribution. In the final stage, the mesh data
structure is reconstructed using efficient heap-sorting techniques. This entire process occurs in a
parallel and distributed manner.

7. Application to an EM Waveguide Filter

Our AMR library has been tested in the finite-element simulation of electromagnetic wave scatter-
ing in a waveguide filter [4]. The problem is to solve Maxwell’s equation for the electromagnetic
(EM) fields in the filter domain. A local-error estimate procedure based on the Element Residue
Method (E M) is used in combination with the AMR technique to adaptively construct an opti-
mal mesh for the problem solution.

The adaptive refinement and partitioning of a finite element mesh for EM scattering in the
waveguide filter is illustrated on 16 processors of the NASA Goddard Cray T3E. An example of
adaptive refinement for a 3D tetrahedral mesh is available.

Adaptive refinement, mesh partitioning, and migration applied to a waveguide filter.

8. Summary

A complete framework for performing parallel adaptive mesh refinement in unstructured applica-
tions on multiprocessor computers has been described. This includes a robust parallel AMR
scheme, mesh quality control, load-balancing, the implementation technique using Fortran 90 and
MPI, and the interlanguage communication issues. Electromagnetic scattering in a waveguide fil-
ter has been demonstrated. Parallel performance results on several multiprocessor systems will be
given in our final paper. More information on Pyramid: A JPL Parallel Unstructured AMR
Library is also available.

The Table 1 gives performance results of the AMR (logical and physical) step and the load bal-
ancing and migration step. The refinement randomly chooses half of the elements per processor.
The number of elements increases with the partitioning slightly due to maintinain mesh consis-
tency constrains based on this refinement scheme.

Acknowledgments

The research described in this paper was performed at Jet Propulsion Laboratory, California Insti-
tute of Technology, under contract to the National Aeronautics and Space Administration. The
supercomputers used in this work were provided with funding from the NASA offices of Space
Science, Aeronautics, and Mission to Planet Earth.

Table 1: Results for Waveguide Filter after 3 Refinements on the NASA Goddard Cray T3E

I # of Processors 1 AMR Time 1 Time Load Balancing Number of
Elements

32

295,405 3.75 sec 13.55 sec 64

292,612 15.36 sec 57.34 sec

128

335,527 1.51 sec 0.54 sec 256

305,22 1 1.65 sec 2.93 sec

512 397,145 1.86 sec 0.27 sec

References

1. R. Biswas, L. Oliker, and A. S o h . “Global Load-Balancing with Parallel Mesh Adaption on
Distributed-Memory Systems.” Proceedings of Supercomputing ’96, Pittsburgh, PA, Nov. 1996.

2. E. Boender. “Reliable Delaunay-Based Mesh Generation and Mesh Improvement.” Communi-
cations in Numerical Methods in Engineering, Vol. 10,773-783 (1 994).

3. Graham F. Carey, “Computational Grid Generation, Adaptation, and Solution Strategies”.
Series in Computational and Physical Processes in Mechanics and Thermal Science. Taylor &
Francis, 1997.

4. T. Cwik, J. 2. Lou, and D. S. Katz, “Scalable Finite Element Analysis of Electromagnetic Scat-
tering and Radiation.” to appear in Advances in Engineering Software, V 29 (2), March, 1998.

5. V. K. Decyk, C. D. Norton, and B. K. Szymanski. “Expressing Object-Oriented Concepts in
Fortran 90”. ACM Fortran Forum, vol. 16, num 1 , pp. 13-1 8, April 1997. Also as NASA Tech
Briefs, Vol. 22, No. 3, pp 100-101, March 1998 (reduced version).

6. G. Karypis, K. Schloegel, and V. Kumar. “ParMeTiS: Parallel Graph Partitioning and Sparse
Matrix Ordering Library Version 1 .O”. Tech. Rep., Dept. of Comp. Science, U. Minnesota, 1997.

7. C. Norton, V. Decyk, and B. Szymanski. “High Performance Object-Oriented Scientific Pro-
gramming in Fortran 90”. Proc. 8th SIAM Conf. on Parallel Proc. for Sci. Comp., Mar. 1997.

8. M. Shephard, J. Flaherty, C. Bottasso, H. de Cougny, C. Ozturan, and M. Simone. “Parallel
automatic adaptive analysis”. Parallel Computing 23 (1 997) pg. 1327-1347.

